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IMPACT OF ELASTIN BIOMECHANICS ON PROXIMAL ARTERY STIFFNESS IN PULMONARY HYPERTENSION

Background: 

•Chronic pulmonary hypertension leads to 

vascular remodeling

– Increased flow resistance in distal arteries

– Elevated stiffness of proximal arteries

– Increased hemodynamic load exacerbates 

cardiac remodeling and eventual right 

ventricular failure

•Artery Morphology

– Tunica Intima: Innermost layer consisting of 

endothelial cells and basement membrane

– Tunica Media: Elastic layer comprised of 

smooth muscle, elastic lamellae and 

collagen

– Tunica Adventitia: Helically oriented 

collagen bundles provide strength and 

rigidity at high strain

Methods:

•Animal model

– 3-Control, 5-Hypertensive male Holstein calves (2-wks)

– Hypertension induced by hypobaric hypoxia, 2-wks, 430 

mmHg 

•Uni-axial stress-strain testing

–MTS, Insight 2, material testing system used to test 

stress-strain response of circumferential tissue sections 

under uni-axial load

Results:

•Morphology

– 28% average increase in tissue thickness due to hypertension

– 7% average increase in elastin content due to hypertension

Conclusions:

•Mechanobiological adaptations of the continuum and 

geometric properties of elastin, in response to pulmonary 

hypertension, significantly elevate the circumferential 

stiffness of proximal pulmonary arterial tissue. 

• Hypertension elevates the physiologic strain and causes 

the stress-strain response to operate outside the elastin-

dominant stress-strain region.  Although this results in 

increased collagen recruitment at systole, diastolic stress 

remains elastin-dependent.

Fig. 1 Detail of artery morphology [Ref 1.]

Objective: 

•Determine how changes in the structure and 

material properties of elastin, resulting from 

pulmonary hypertension, affects proximal 

pulmonary arterial stiffness.

Fig. 2 Detail of material testing apparatus

•Elastin Purification

– Elastin was purified from arterial material using CNBr-

formic acid digestion [Ref. 2]

•Morphology

– Artery thickness measured at with digital calipers

– Area fraction determined with image processing of VVG-

elastin stained tissue sections (Matlab)

•Average results for arteries

– 46% increase in modulus

( σ=13%, p = 0.02 )

– 81% increase in stiffness

( σ=23%, p << 0.05 )

–Material properties calculated 

at 35% strain

•Average results for elastin

– 85% increase in modulus

( σ=45%, p << 0.05 )

– 100% increase in stiffness

( σ=62%, p = 0.02 )

– 47% of arterial load is carried 

by elastin, at a minimum

Fig. 2 Comparison of mean values for fresh artery stiffness and modulus 

Fig. 3 Comparison of mean values for elastin stiffness and modulus 

Fig. 4 Left: typical behavior of fresh and elastin tissue, σtrans is the 
transition strain of transition from the elastin dominant (A)  to collagen 
dominant (B) region.  Right: typical curvature plot of fresh tissue

•Average diastolic strain

– 30% for control tissue

– 49% for hypertensive tissue

•Average systolic strain

– 58% for control tissue

– 69% for hypertensive tissue

•Average transition strain = 50%

• Increased pressures, due to hypertension, shifts physiologic 

strains to higher values

• The transition strain (εtrans) is unaffected by hypertension

• Shift of the physiologic strain range to higher strains causes the 

hypertensive stress-strain response to operate outside the elastin 

dominant region

– Increased strain stiffening leads to reduced physiologic strain 

range

• Material properties

Fig. 5  Physiologic region of the stress strain curve.  Control stress-
strain region labeled (A), hypertensive region (B) .
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